skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Horton, Kyle G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During their nonbreeding period, many species of swallows and martins (family: Hirundinidae) congregate in large communal roosts. Some of these roosts are well-known within local birdwatching communities; however, monitoring them at large spatial scales and with day-to-day temporal resolution is challenging. Community-science platforms such as the Purple Martin Conservation Association’s project MartinRoost and eBird have addressed some of these challenges by centralizing data collected from regional communities. Additionally, due to the high densities of birds within these aggregations, their early morning dispersals are systematically detected by weather radars, which have also been used to collect data about roost timing and location. An important issue, however, limits spatiotemporal scope of previous radar-based studies: finding the roost signatures on millions of rendered reflectivity images is extremely time-consuming. Recent advances in computer vision, however, have allowed us to reduce this effort. The rise of this technology makes it necessary that we assess whether our biological definition of a roost matches what the machine-learning models are capturing. We do so by comparing eBird detections of roosts in the Great Lakes region with those obtained by a human-supervised machine-learning model from 2000 to 2022. With more than two decades of data, we assess the ability of these two tools to detect roosts on a day-to-day basis, and we compare the phenology of dispersals to investigate whether radar detections correspond to swallow and martin roosts or if they are associated with other well-known birds that form large aggregations. Our comparison of these datasets strongly suggests that swallows and martins are responsible for the dispersals we observe on the radars from July to late September; however, the alternative species we examined could be causing some of the detections in October. 
    more » « less
    Free, publicly-accessible full text available November 4, 2026
  2. Abstract Our ability to forecast the spatial and temporal patterns of ecological processes at continental scales has drastically improved over the past decade. Yet, predicting ecological patterns at broad scales while capturing fine-scale processes is a central challenge of ecological forecasting given the inherent tension between grain and extent, whereby enhancing one often diminishes the other. We leveraged 10 years of terrestrial and atmospheric data (2012–2021) to develop a high-resolution (2.9 × 2.9 km), radar-driven bird migration forecast model for a highly active region of the Mississippi flyway. Based on the suite of candidate models we examined, adding terrestrial predictors improved model performance only marginally, whereas spatially distant atmospheric predictors, particularly air temperature and wind speed from focal and distant regions, were major contributors to our top model, explaining 56% of variation in regional migration activity. Among terrestrial predictors, which ranked considerably lower than atmospheric predictors in terms of variable importance, vegetation phenology, artificial light at night, and percent of forest cover were the most important predictors. Furthermore, we scale this model to demonstrate the capacity to generate real-time, high-resolution forecasts for the continental United States that explained up to 65% of national variation. Our study demonstrates an approach for increasing the resolution of migration forecasts, which could facilitate the integration of radar with other data sources and inform dynamic conservation efforts at a local scale that is more relevant to threats, such as anthropogenic light at night. 
    more » « less
  3. Abstract Long‐term monitoring of bird populations across scales is important in evaluating conservation targets and creating effective conservation strategies. For nearly six decades, the Breeding Bird Survey (BBS) has served as the primary broad‐scaled source of relative abundance trends of swallows and martins in North America. Recently, however, it has become possible to obtain breeding population trends using semi‐structured eBird community science data. Moreover, weather surveillance radar data of swallow and martin roosting populations yield a third complementary source of trend information.Using results from these three approaches, we propose a novel method of spatially combining estimates of percent change per year into a probability of directional agreement and/or disagreement that describes (1) the direction of the trend within a given region, (2) the amount of evidence associated with the estimate and (3) how much uncertainty surrounds it. We focus our efforts on an area of high Hirundinidae concentration in the North American Great Lakes region and predict trends from 2012 to 2022.We found a high probability of agreement between all three sources about observed declines in swallow and martin trends in the region surrounding Lake Ontario and to the west of Lake Michigan. Focusing future research on these regions could improve our understanding of these declines and help build more targeted conservation initiatives.Synthesis and applications. Our data integration methodology allows managers to identify regions that accumulate evidence of concerning trends across multiple wildlife monitoring schemes. These regions can thus be prioritized in conservation and management efforts. This approach can be generalized to other sources of long‐term monitoring data of different species, at different stages of their annual cycle, in any geographic location. 
    more » « less
    Free, publicly-accessible full text available December 10, 2026
  4. More than two billion birds migrate through the Gulf of Mexico each spring en route to breeding grounds in the USA and Canada. This region has a long history of complex natural and anthropogenic environments as the northern Gulf coast provides the first possible stopover habitats for migrants making nonstop trans‐Gulf crossings during spring migration. However, intense anthropogenic activity in the region, which is expanding rapidly at present, makes migrants vulnerable to a multitude of obstacles and increasingly fragments and alters these habitats. Understanding the timing of migrants' overwater arrivals has biological value for expanding our understanding of migration ecology relative to decision‐making for nonstop flights, and is imperative for advancing conservation of this critical region through the identification of key times in which to direct conservation actions (e.g. temporary halting of wind turbines, reduction of light pollution). We explored 10 years of weather surveillance radar data from five sites along the northern Gulf of Mexico coast to quantify the daily timing and intensity of arriving trans‐Gulf migrants. On a daily scale, we found that migrant intensity peaked an average of nine hours after local sunrise, occurring earliest at easternmost sites. On a seasonal level, the greatest number of arrivals occurred between late April and early May, with peak intensity occurring latest at westernmost sites. Overall intensity of migration across all 10 years of data was greatest at the westernmost sites and decreased moving farther to the east. These findings emphasize the differential spatial and temporal patterns of use of the Gulf of Mexico region by migrating birds, information that is essential for improving our understanding of the ecology of trans‐Gulf migration and for supporting data‐driven approaches to conservation actions for the migratory birds passing through this critical region. 
    more » « less
  5. Abstract Earth's lower atmosphere is a vital ecological habitat, home to trillions of organisms that live, forage, and migrate through this medium. Despite its importance, this space is seldom considered a primary habitat for ecological or conservation prioritization, making it one of the least studied environments. However, it plays a crucial role as a global conduit for the transfer of biomass, weather, and inorganic materials. Fundamental research is essential to address core ecological questions related to the ecological consequences of this habitat's intricate spatial and temporal structure. To advance our understanding of airspace use by migratory animals, we analyzed over 108 million 5‐min radar observations from 143 NEXRAD sites, focusing on 24‐h diel cycles across the contiguous United States. This extensive dataset, spanning from 1995 to 2022, allowed us to quantify aerial space use by systematically identifying peak activity times, the portion of the airspace that contained the majority of migration activity, and the percentage of migrants passing across diurnal and nocturnal diel cycles. We found that airspace is used predominantly during nocturnal periods in both spring and autumn (88%), while summer exhibited a more balanced distribution (54% nocturnal). Additionally, the percentage of nocturnal activity increased with latitude in spring and autumn but decreased in summer. Peak aerial activity typically occurred about 4 h after local sunset in both spring and autumn, with variations based on latitude and longitude. During these peak times, on average, half of the aerial movement was confined within a vertical band of 516 meters, starting around 355 m above ground level. Our research underscores the need to view the lower atmosphere as a structured habitat with significant ecological importance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  6. Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth’s magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration. 
    more » « less
  7. Abstract The timing of avian migration has evolved to exploit critical seasonal resources, yet plasticity within phenological responses may allow adjustments to interannual resource phenology. The diversity of migratory species and changes in underlying resources in response to climate change make it challenging to generalize these relationships.We use bird banding records during spring and fall migration from across North America to examine macroscale phenological responses to interannual fluctuations in temperature and long‐term annual trends in phenology.In total, we examine 19 species of North American wood warblers (family Parulidae), summarizing migration timing from 2,826,588 banded birds from 1961 to 2018 across 46 sites during spring and 124 sites during fall.During spring, warmer spring temperatures at banding locations translated to earlier median passage dates for 16 of 19 species, with an average 0.65‐day advancement in median passage for every 1°C increase in temperature, ranging from 0.25 to 1.26 days °C−1. During the fall, relationships were considerably weaker, with only 3 of 19 species showing a relationship with temperature. In those three cases, later departure dates were associated with warmer fall periods. Projecting these trends forward under climate scenarios of temperature change, we forecast continued spring advancements under shared socioeconomic pathways from 2041 to 2060 and 2081 to 2100 and more muted and variable shifts for fall.These results demonstrate the capacity of long‐distance migrants to respond to interannual fluctuations in temperatures, at least during the spring, and showcase the potential of North American bird banding data understanding phenological trends across a wide diversity of avian species. 
    more » « less
  8. Abstract As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia—making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density. In over 70% of our models, we identify skyglow as a highly influential and consistently positive predictor of bird migration stopover density across the United States. This finding points to the potential of an expanding threat to avian migrants: peri-urban illuminated areas may act as ecological traps at macroscales that increase the mortality of birds during migration. 
    more » « less